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SUMMARY

This report presents a robust control design using strictly positive realness for second-

order dynamic systems. The robust strictly positive real controller allows the system to be

stabilized with only acceleration measurements. An important property of this design is that

stabilization of the system is independent of the system parameters. The control design

connects a virtual system to the given plant. The combined system is positive real regardless of

system parameter uncertainty. Then any strictly positive real controllers can be used to achieve

robust stability. A spring-mass system example and its computer simulations are presented to

demonstrate this controller design.

1. INTRODUCTION

Positive real (PR) systems have many applications for shape and vibration control of

large flexible structures. In most of those PR designs, the output of the plant is usually

assumed to include velocity, and the sensors are assume to be collocated with the actuators. In

[1], position and velocity feedback are used together to control large space structures, and the

controllers are strictly positive real. PR feedback with velocity measurement is examined in [2]

for the control of a flutter mode. [3] presents a robust multivariable control of structures using

a passive controller in which the velocity sensors are collocated with the control actuators.

Several passive control designs using acceleration, velocity and position measurements are

presented in [4]. [5] generalizes the designs in [4] to handle nonlinear systems. The method

presented in [6] uses displacement sensors. Similarly, [7] examines direct position plus

velocity feedback. A feedforward positive real design can be seen from [ 11 ].

Nevertheless, in some application areas, only acceleration is directly measurable. Even

though velocity and position may be obtained by integrating the measured acceleration, bias in

velocity and position will decrease the accuracy of the integration. Therefore, in this study we

develop a robust controller for multivariable second-order system when only acceleration is

directly measurable.

In this report, we review some definitions and a theorem associated with dissipativeness

and passivity. Dissipativeness and passivity are then related to strictly positive realness and

positive realness. Using these backgrounds we develop a virtual system to compute an output

2

PR.'_O!T':',7, :."'_'_£ r? _.t;:'._ bi_'.":' F_LMED



which will make the combined system of the plant and the virtual system positive real (PR).

The inputs to the virtual system are only acceleration and the control force applied to the plant.

More important, the virtual system is model independent and thus the global system is robustly

positive real. Therefore the input / output controller can be constructed by any strictly positive

real controllers. When the stiffness matrix of the second-order system is positive definite, we

show that it is possible to stabilize the displacement if the actuators are properly located. With

this design, the displacement is globally asymptotically stable. A spring-mass example with

three masses and no damping is used to illustrate our design method. Computer simulations are

also presented.

2. PRELIMINARIES

The concept of dissipativeness describes an important input-ouput property of dynamical

systems. Consider a system with input u and output y, where u is an mxl vector and y is a

pxl vector. A supply rate for the system is defined as follows.

Definition 1 [8]: A supply rate is a real function of u and y defined as

w(u, y) = yTQ y + 2 yrS u + uTR u (1)

where Q, S, and R are constant real matrices with dimensions pxp, pxm and mxm

respectively.

Q and R axe usually symmetric matrices, w(u,y) is often called the input energy into the

system. Dissipativeness is defined with respect to the supply rate w(u,y) in the following

definition.

Definition 2 [8]: The system with input u and output y is called dissipative with respect to

the supply rate w(u,y) if for all locally integrable u(t) and all T__ to, we have

frw(t)dt :> 0 (2)
t

II

where x( t 0)=0

interested.

and w(t)=w(u(t),y(t)) is evaluated along the trajectory of the system



Eq.(2)meansthat an initially unexcitedsystem can only absorb energy as long as the

system is dissipative. If the supply rate represents the input energy into the system, then Eq.(2)

states that a system with no initially stored energy transforms the input energy into either stored

energy or dissipated energy. Thus no energy can be generated from a dissipative system.

Passivity is defined as a special case of dissipativeness.

Definition 3 [8]: A system is passive if and only if it is dissipative with respect to the supply

rate

w(u, y) = ury (3)

An algebraic condition for passivity can be found if the system is represented by the

state-space equations

= f(x) + G(x)u

y = h(x) + J(x)u (4)

where f(x) and h(x) are real vector functions of the state vector x, with f(0)=0, h(0)=0, and

G(x) and J(x) are real matrix functions of x. These four functions are assumed to be infinitely

differentiable. We also assume that u and y have the same dimension. The system is

furthermore assumed to be completely controllable. Theorem 1 provides a test for the passivity

of a system written in the form of Eq. (4).

Theorem 1 [9]: The system is passive if and only if there exist real functions ¢(x), l(x) and

W(x) with _ (x) continuous and with

¢(x) >0, forall x (5)

and

_(0)--0 (6)



suchthat

(i)

(_)

(_)

VT¢(x) f(x) = - 1T(x)l(x)

1 / 2 GT(x)V¢ (x) =h(x) - WT(x) I(X)

J(x)+ Jr(x)= W(x)TW(x)

(7)

Moreover, if J (x) is a constant matrix, then W(x) may be taken to be constant.

The function ¢(x) is generally not unique for a given dynamic passive system.

Nevertheless, a physical meaning can be attached to it. It is shown in [9] that

ST ST2 , ur(t)y(t)dt = ¢[x(T)]- ¢[x(t0) ] + , [l(x) + W(x)u] r [l(x) + W(x)u]dt
0 o

(8)

Eq.(8) may be interpreted as the conservation of energy equation. _¢(x) is a stored energy for

the system. The first integral corresponds to the input energy to the dynamic system. The

second one is proportional to dissipated energy, and it is always nonnegative. As a

consequence, Eq.(8) means that the energy input is equal to the variation of stored energy plus

the loss of energy which is a positive function.

A linear system is passive if and only if its transfer matrix is positive real [10]. Passivity

can thus be seen as a generalization of positive realness for nonlinear systems. Since the

systems investigated here are linear, we will equivalently use these two concepts for the rest of

this report.

3. A VIRTUAL SYSTEM DESIGN

The multivariable system (Plant (P)) is described by

Mx+Di +Kx=Bu (9)

where u is an mxl control vector, x is an nxl state vector, M is an nxn symmetric positive

definite matrix, D and K are nxn symmetric positive semi-definite matrices, and B is an nxm

matrix. Let a virtual system 0O be defined with the following equation



x =Ax +B'u (10)

where A is an lxn matrix, B' is an lxm matrix, and x. is an lxl vector. The following

Theorem 2 allows us to compute an output y that makes the global system (which is a

combined system of the given plant and the virtual system) positive real.

Theorem 2: Let H ,, A and B' be chosen such that

2H,A=B T

'T T
B M. =2H,

(11)

where M, is an 1 x 1 positive semi-definite matrix. If

y = H, _. (12)

then the system with input u and output y is positive real.

This scheme is illustrated in Fig. 1

U

Acceleration
..._l Plant (P) System (V)

9
Y

U

Figure 1. A Virtual System

Proof: For this proof, it is useful to represent the system with a state-space representation. Let
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T TXr4)=(XT_T T_T) (13)XT =(X_ X2 X_ X,

The equations describing the global system may be rewritten as

{Xy = f(X) + G(X)uh(X) + J(X)u
(14)

where

f(x) =

X 2

_ M-'Dx2_ M-1Kxl

X 3

_AM-IDx _AM-1Kx
2

(15)

G(X) = M IB

_,AM- _B + B'

(16)

h(X) =

0

(17)

J(X)--0 (18)

Let a candidate for the function _ in Theorem 2 be

1 r 1 1 .0(X)=_x M_+ xrKx+_(xo-Ax)TM,(x,-A;_) (19)

where M, is positive semi-definite. The sum of the In'st two terms corresponds to the stored

energy of the plant. The additional term is added for the positive real design. The function _(X)

can be written using the state variables as

7



1 T 1 T 1
{_ (X) = "_"x 2M x 2 + "_"x ,K x, + "_" (x 4 - Ax 2)TM. (x,, -- Ax 2) (20)

_)(X) is a positive function and t_(0)---0. It must be checked that there exists a function 1 (X)

such that

vTI_(X) f(X) --- IT(x) l(X) (21)

This calculation is considerably simplified when we notice that

d (X) ]VrO(X) fix) - dt
u=O

(22)

As a consequence we have

= _T(Mx+ Kx) + l(x,- Ax) r M° (:(° - A_)vT_(x)f(X)

1 .

+2 (x. - Ai)rM° (x.- a x) I_=o

(23)

When u = 0, the last two terms cancel out and therefore

_TT_)(X) f(X) = xT(M x + Kx) [
u--0

(24)

Thus we finally have

vT_)(X) fiX) "- -- iTDx =-- x_Dx 2 (25)

Since D is positive semi-definite, it is possible to find a matrix R such that D = R r R. The

above equality becomes

T
vT_(x) fiX) = - (Rx 2) (R x 2) = - l(X) T l(X) (26)

where 1 (X)= R x 2 . Thus equality (i) from Theorem 1 is satisfied. Equality (iii) of Eq. (7)
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reduces to

J(X) + Jr(X) = wr(x) w(x) = 0 (27)

The function W(X) is therefore equal to zero. Equality (ii) of Eq. (7) becomes

h(X) = +GT(X) V¢(X) (28)

Only the partial derivatives with respect to velocity will be used to evaluate Eq. (28). We

have

-x_M + (Ax z- x,)r M.A
Dx 2

----- T&l) (x -Ax 2) M.
Ox 4

4

(29)

The function h(X) is such that

2h(X) = (M - _ B) "r + (A M- lB + (30)

Obvious simplifications yield

T T 'T T
2h(X)=(BT-B ' M,A)x2+B M,x 4 (31)

hfX) equals H .x, if the following equations are satisfied

B T 'T T-B M.A=0
'T T

B M.=2H.
(32)

Those equations can be rewritten as

9



2H,A=B T
'T T

B M. = 2H,
(33)

and the theorem is proved •

There are several possible ways to solve the above system of equations. Given H v and

B, we can solve for some possible A, M, and B'. At the end of the calculation, it must be

checked that M, is positive semi-definite. Another method consists of choosing B, A and a

positive semi-definite M, and then solving for possible B' and H ,.

4. CHOICE OF A CONTROLLER

If the output of the global system is chosen as in Theorem 2, then the system is positive

real. Thus the closed-loop system is uniformly asymptotically stable with zero input if the

controller is strictly positive real [3]. That is, for this case, we have

lim (H vxo) = 0 (34)
t -.._ m

Our goal is to let x go to zero. Theorem 3 may be used to achieve this goal.

Theorem 3: Assume that Theorem 2 is used to make the global system PR. Furthermore

assume that

(i) Brx=0and u=0imply x=0.

(ii) K is positive def'mite.

(iii) The system is connected to a dissipative closed-loop controller.

Then lim x(t) =0.
I .-I, m

Fig.2 shows the control scheme for the plant (P).
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t SPR

Figure 2. A SPR Controller for the Virtual System

Theorem 3 allows us to design a robust controller for Plant (P). No knowledge of the

constant matrices M, D and K is required. Furthermore, the only measurements needed are

acceleration and input. Acceleration may easily be measured for many practical systems by

using common accelerometers. The input u may be obtained by measuring the output of the

SPR controller.

The proof of Theorem 3 uses the following two lemmas.

Lemma 1: Assume that the Laplace transform off(t) and t;(t) exist in a neighborhood of the

origin. Furthermore assume that lim f(t) =0. Then lira t_(t) = 0.
t -..¢ m t ''¢ ID

Proof: Let F(s) be the Laplace transform of f(t). The f'mal value theorem yields

lim s F(s) = 0 (35)
s--¢0

The Laplace transform of the derivative of f(t) is

LIi(t) ] = sF(s) - f(O) (36)

As a consequence we have

11



lira t_(t) = lira s(sF(s)-fr0)) =0 (37)

Lemma 2: Let e(t) be a function of time and let e(t) go to zero as time increases. Then if x

satisfies the differential equation

D_+Kx=e (38)

where D is positive semi-definite and K is positive definite, then x converges to zero.

Proof: Let m denote the rank of D. There exists an invertible nxn matrix P such that

D" = P D P- 1 (39)

where

0]D" = D_, (40)

D22 is an mxm positive definite matrix. Let K ° be defined as

K'=PKp -1 (41)

K" may be written as

(42)

The dynamical equation can be written as

P D P- 1 (p _) + p K P- 1(P x) = P _(t) (43)

Let y =Px and rl (t) =P e(t). The system is now described by

D'# + K'y = TI(t) (44)
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If y= Y2

I K],y_ + K]2y2=Tl_ (t)
D22_2 +K_,y, + K'22y2 = Tl2(t)

(45)

The In'st equation can be solved in terms of Yl and Eq. (45) reduces to

t .-i . K_? 1 (t)

Yl =-Kll KI2Y2 + rll

-1K]2)y 2 1"1 (t)+ -'r''-lrl (t)D22Y2 +(K;2- K;IK_, = 2 II,21111 i
(46)

D2= and (K_2 - K'2,K]_' K]2 ) are positive definite matrices. Thus Y2 may be considered as

the output of a strictly stable system. The output of the strictly stable system converges to zero.

The parameter Yz will therefore go to zero. The ftrst equality in Eq.(46) shows that y_ also

goes to zero. Consequently, y converges to zero and so does x.

Proof of Theorem 3: (-u) is the output of the dissipative controller. A dissipative controller

is always strictly stable. Knowing that y goes to zero, we can therefore conclude that u also

goes to zero. Furthermore, we have

2H,x =2H,Ax+2H,B'u (47)

by multiplying Eq.(10) with 2H ,. Since 2H, A = B r, this equation may be rewritten as

BZx=2H,x-2H,B'u (48)

2 H, B 'u goes to zero as u goes to zero. Furthermore, we know that y= H, _, converges to

zero as time increases. Using Lemma 1 allows us to say that H, x also goes to zero if we

assume that the Laplace transforms of _, and its derivative exist. As a consequence, B r x

goes to zero. The equations describing the system are linear and consequently continuous.

13



Thus,if B r x and u go to zero, x goes to zero according to assumption (i) in Theorem 3. The

dynamics of the closed-loop system is now

D_ +Kx =Bu- Mx =E(t) (49)

where e(t) vanishes as time increases. Using Lemma 2 we conclude that x ( t ) goes to zero.

5. EXAMPLES

We study the simple example of a system with three masses, three springs and no

dashpots. The example is shown in Fig. 3.

/
/
/
/

xl x2 x3

kl k2 k3

Figure 3. A Spring-Mass System

This system needs to be stabilized as it is not naturally asymptotically stable. With no control

and non-zero initial conditions, the three masses oscillate since there is no damping. The

equations describing the system in Fig.3 are

m lxl+(k I +k2)x I -k 2x 2 = u 1

m 2x2-k 2x l+(k 2+k3)x 2-k 3x 3 =u 2

..

m 3x3- k 3 x 2 + k 3 x 3 = u 3

(5O)

The matrices M, D and K are

14



M_ Ii,°°]m 2 0

0 m 3

(51)

D=0 (52)

Ik t + k2 -k 2 0 1K = I-k2 k2+k3 -k 3-k 3 k 3

(53)

M and K are positive definite as long as none of the masses and the spring constants is equal to

zero. Several possible controller designs can be used here.

m=n=l=3

There axe three control parameters here. A reasonable choice is

B= 1

0
(54)

and the control vector u is defined by u r = (u _ u

given by

2 u3)" Obvious solutions to Eq.(ll) are

A =I3x 3

B'=kB

1

M. = _'I3,, 3

(55)

where k is an arbitrary strictly positive real number. As a consequence, the vector x, is

generated by the differential equation

15
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x =x+Z.Bu (56)

All the assumptions of Theorem 3 are satisfied. The vector x may therefore be controlled with

the help of any dissipative feedback controller. A simple choice consists of taking a constant

controller, that is a controller with a transfer matrix of the form k I, where I is the identity

matrix.

The simulation is made on MATLAB. The following values are used in the simulation:

m I =m2=m3= 1 (57)

kl=l k2=2 k3=3 (58)

The initial conditions were arbitrarily chosen to be

= 5 x 2. = - 2 x 3 = 9 (59)le e

1, = 3 x2, = 5 x3, =- 4 (60)

For the vector x,, we choose the simple initial conditions

x, =0 g. =0 (61)

The constant k is equal to 0.5. The gain of the feedback controller is k =1. The plot of the

displacements is shown in Fig. 4. In the following plots, x 1 is indicated by --, x 2 is indicated

by ... and x 3 is indicated by ---.
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The control goal is achieved. The three displacements vanish with time.

Nevertheless, this design requires that a force be applied on each of the masses. It is possible

to reduce the number of actuators with the following control design.

m--l--2

Here only two forces are be applied to the system. Thus there are three possible choices,

depending on what masses the forces are applied. Let us start with

B_

(62)

This choice means that the forces are applied on the masses m _ and m 2. The control vector u

issuchthat uV=(u_ u 2) . The vector x° is now a vector with dimension 2. Eq.(ll) hasthe

following obvious solution

17



A =B T

1
Hv=_I2x 2

B'=_I2x 2

1

M. = _-I2x 2

(63)

where _. is an arbitrary strictly positive real number and I denotes the identity matrix. Thus x,

can be computed from the following differential equation.

x = x + 3.u (64)
II

and the output of the system is y = 1 _ ,.

A dissipative controller must be chosen to control the system. Here again, a constant

controller is a simple possible choice. Its transfer function is k I, where k is a positive constant.

It remains to ensure that Br x = 0 and u = 0 imply x = 0. If Brx = 0 and u=0, then the

dynamical equations of the system become

(k I + k2)x 1 + k 2 x 2 = 0-k 2x l+(k 2+k3)x 2-k3x 3 =0

m 3x3- k 3x 2 + k 3 x 3 - 0

(65)

By differentiating the second equation and solving for x 3' we have

X3 --hXl+ (k2 +k3)"-" x2
k2 k3 (66)

As x _ and x 2 are both zero, x s is also equal to zero. Thus the above equations are reduced

to Kx = 0. Since K is positive definite, this yields x = 0. All the assumptions of Theorem 3 are

18



satisfiedandwearenow assuredthatx will go to zero.

The closed-loop system is simulated with the same parameter choice as before. The plot

of the displacements can be seen in Fig. 5. Here again the stabilization goal is achieved since

the three displacements vanish as time increases.

10 Plots of the displacements xl, x2 and x3
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-4 a i
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Figure 5

let

It is possible to stabilize this system with a different distribution of forces. For instance,

..

0 0

(67)

Two forces are applied respectively on mass 2 and mass 3. With the same design as above, a

controller for the system can be designed. The plot of the displacements is presented in Fig. 6
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with thesame initial conditions.

10
Plots of the displacements xl, x2 and x3
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Time

i i i

25 30 35 40

Figure 6

Finally a third possible choice is

B ....

(68)

In this case some forces are applied to mass 1 and mass 3. The plot of the simulation can be

seen in Fig. 7.
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Figure 7

In all these case, the system is stabilized with the help of only two actuators.

m--l=l

Here we design a control system with only one actuator. This actuator may be located on

any of the three masses. Let us f'trst apply a force on mass 1, i.e. the matrix B is

...

(69)

Eq.(11) in Theorem 2 has the following obvious solution

21



A -B T

1

B'-_.

_±
M,-)_

(70)

where _ is an arbitrary strictly positive real number. The state x, is calculated by integrating

the differential equation

....

x,= x I + _u (71)

1
The output of the system is y = "_"_..

Here again the SPR controller is chosen to be constant. Its transfer matrix is of the form

G(s) = k, where k is any strictly positive real number. With this choice we are assured that x

converges to zero.

It should be checked as before that Brx =0 and u = 0 imply x = 0. The procedure is

unchanged and once again those assumptions yield K x = 0. Since K is assumed to be positive

semi-definite, x is necessarily equal to zero.

The simulation is run with the same choice of initial conditions. The constant _. is still

equal to 0.5, and k is equal to 1. The three displacements go to zero as expected which can be

seen in Fig. 8.
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The force could be applied on mass 3. The matrix B for this situation is

B_

(72)

The design method is unchanged. The closed-loop system has been simulated in this case with

the same initial conditions and the same choice for the parameters involved. The plot is shown

in Fig. 9.
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We could choose to apply the force on mass 2. In this case,

(73)

Nevertheless, it can be checked that condition (i) of Theorem 3 is not satisfied in this case.

Thus no controller design can be implemented with the above choice.

6. CONCLUSIONS

The control method presented in this report is particularly of interest for practical reasons.

Only acceleration at certain locations of the system need to be measured by using common

accelerometers. Furthermore, the design is model independent and no knowledge of the

constants of the dynamic system is required. Finally, any strictly positive real controller can be

used. Thus it is possible to choose one that yields a satisfactory transient response.
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